在一个准确的SDF场中,有,然而,这一情况在离散到网格的SDF中并不严格成立;
原因是,如果源几何体的表面有尖点,即值连续但导数不连续的点(连续),则在这一处尖点的外角平分线上,无论用哪边的采样点来求数值差分,得到的都是不完整的信息。而此处的中心差分又没有意义。
例如,矩形的角点。假如矩形的两边分别与轴平行,则在其离散的SDF中,对于接近第一象限角点外角平分的网格点,其 $ \phi _x $ 在一侧为0,在另一侧为1;轴也是一样的情况。按Godunov
格式,取得此处的导数为;然而实际上此处的梯度是难以准确定义的,因为在极坐标范围内,无论向哪个方向走,的增长率都是1。
此时,Level set方法实际上仍然可以工作,因为我们知道
然而,实际计算中,如果采用沿坐标轴分别计算方向的方法计算,在这种增长率最大值的方向有多个的情况下,是不能得到正确的的。
这是Level set 方法处理尖锐几何体的很大障碍。对于流体中常见的连续几何体,此问题造成的影响可以通过加密网格来无限缩小。然而对于有尖点的物体,不管网格取的多小,此效应都不会缓解。
参考:
Robust Three-Dimensional Level-Set Method for Evolving Fronts on Complex Unstructured Meshes
Robust Three-Dimensional Level-Set Method for Evolving Fronts on
Complex Unstructured Meshes
条目类型 期刊文章
作者 Ran Wei
作者 Futing Bao
作者 Yang Liu
作者 Weihua Hui
摘要 With a purpose to evolve the surfaces of complex geometries in
their normal direction at arbitrarily defined velocities, we have
developed a robust level-set approach which runs on
three-dimensional unstructured meshes. The approach is built on the
basis of an innovative spatial discretization and corresponding
gradient-estimating approach. The numerical consistency of the
estimating method is mathematically proven. A correction technology
is utilized to improve accuracy near sharp geometric features.
Validation tests show that the proposed approach is able to
accurately handle geometries containing sharp features, computation
regions having irregular shapes, discontinuous speed fields, and
topological changes. Results of the test problems fit well with the
reference results produced by analytical or other numerical methods
and converge to reference results as the meshes refine. Compared to
level-set method implementations on Cartesian meshes, the proposed
approach makes it easier to describe jump boundary conditions and to
perform coupling simulations.
日期 2018-09-25
语言 en
网址 https://www.hindawi.com/journals/mpe/2018/2730829/
访问时间 2018/9/26 19:24:17
版权 All rights reserved
卷次 2018
页码 1-15
刊名 Mathematical Problems in Engineering
DOI 10.1155/2018/2730829 <http://doi.org/10.1155/2018/2730829>
ISSN 1024-123X, 1563-5147